RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2023

FIRST YEAR [BATCH 2022-25]

Date : 24/05/2023

Time

PHYSICS [Honours] Paper : CC3

Full Marks : 50

[5×10]

Answer any five questions:

: 11 am – 1 pm

- 1. a) Derive the complex form of Fourier series and find that the expression for the co-efficient.
 - b) $f(x) = \begin{cases} x & \text{in } (0,\pi) \\ 2\pi x & \text{in } (\pi, 2\pi) \end{cases}$

Find the Fourier series for f(x) hence deduce $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.

c) The turning moment T is given for a series of values of the crack angle;

θ:	0 °	30°	60 ^o	90 °	120 °	150°	180°
T:	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of Sine to represent T and calculate T for $\theta = 75^{\circ}$. [2+4+4]

2. a) If Fourier transform of function f(x) is g(s), then show that Fourier transform of $f(x)\cos ax$ is $\frac{1}{2}[g(a+s)+g(a-s)]$.

b) Find the Fourier transform of the function $f(x) = \delta(x-b)$ where $\delta(x)$ is Dirac-delta function and *b* is some constant.

c) Show that the Fourier transform of f(x) where $f(x) = \begin{cases} 1 \text{ for } |x| < 0\\ 0 \text{ for } |x| > a > 0 \end{cases}$ is given by $F(s) = \sqrt{\frac{2}{\pi}} \frac{\sin as}{s}$. Hence using Perseval's identity, show that $\int_0 \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$. [2+3+(3+2)]

3. a) Check the following series diverging or converging

(i)
$$1 + \frac{1}{2!} + \frac{1}{4!} + \cdot$$

(ii) $1 + \frac{1}{3!} + \frac{1}{5!} + \cdot$

Find the value of $\left(1 + \frac{1}{2!} + \frac{1}{4!} + \cdots\right)^2 - \left(1 + \frac{1}{3!} + \frac{1}{5!} + \cdots\right)^2$.

b) Discuss the convergence of the following series: $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{6}} + \cdots$.

- c) A die is thrown 8 times. Find the probability that '5' will show (i) exactly twice, (ii) at least seven times (iii) at least once. [(1+1+2)+3+3]
- 4. a) Show that Poisson distribution is a limiting case of binomial distribution.
 - b) Students of a class were given an aptitude test. Their marks were found to be normally distributed with mean 60 and standard deviation 5. What percentage of students scored:
 - (i) more than 60 marks
 - (ii) less than 56 marks
 - (iii) between 45 and 65 marks

Given:
$$P(x) = \frac{1}{\sigma\sqrt{2n}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
, $P(0.8) = 0.2881$
 $P(1) = 0.3413$
 $P(3) = 0.4986$

P(x) is density function of normal distribution.

c) The random variable $x(-\infty < x < \infty)$ is distributed according to normal distribution

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right), \text{ find the probability density of the random variable } y = x^2. \quad [3+3+4]$$

- 5. a) Show that the ODE is not self adjoint.
 - b) Find the weight factor w(x) and write ODE in a form $\overline{L}y(x) = nw(x)y(x)$ such that itr becomes self-adjoint.
 - c) Write the inner product for two eigenfunctions of ODE including the boundary term.
 - d) What interval [a,b] should we choose so that two different eigenfunctions are orthogonal? [2+3+3+2]
- 6. a) Generating function of Legendre Polynomials $P_n(x)$ is $g(x,t) = \frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$.

Using this find $P_0(x), P_1(x)$.

- b) Derive the recurrence relation: $(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x)$. [4+6]
- 7. Answer the following questions:
 - a) By changing the coordinates appropriately simplify the following PDE and solve it.

$$\frac{\partial \psi}{\partial x} + 2\frac{\partial \psi}{\partial y} + (2x - y)\psi = 0$$

- b) Cuylindrical coordinates are related to Cartesian coordinates are related by: $x = \rho \cos \phi$
 - $v = \rho \sin \phi$

$$z = z$$

Express the operators $\frac{\partial}{\partial x}, \left(\frac{\partial}{\partial x}\right)^2$ in cylindrical coordinates.

[4+6]

8. a) Suppose the following differential equation refers to a problem of two dimensional steady flow of heat:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Solve for *T* with the following boundary conditions: $T(0, y) = 0; T(x, \alpha) = 0$

$$T(a, y) = 0; T(x, 0) = \sin\left(\frac{\pi x}{a}\right)$$

b) Express the following integral in term of gamma function $\int_0^1 x^4 \left| \ln\left(\frac{1}{x}\right) \right|^2 dx$.

c) Show that
$$\beta\left(m, \frac{1}{2}\right) = 2^{2m-1}\beta(m, mn).$$
 [6+2+2]

- × —