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Answer any five questions: [5×10] 

 

1. a)  Derive the complex form of Fourier series and find that the expression for the co-efficient.   
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 c) The turning moment T is given for a series of values of the crack angle; 
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  Obtain the first four terms in a series of Sine to represent T and calculate T for θ = 75
 o
. [2+4+4] 

 

2. a) If Fourier transform of function  f x  is  g s , then show that Fourier transform of 

 cosf x ax  is    
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 b) Find the Fourier transform of the function    f x x b   where  x  is Dirac-delta 

function and b is some constant.  

 c) Show that the Fourier transform of  f x  where  
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3. a) Check the following series diverging or converging  

  (i) 
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 b) Discuss the convergence of the following series: 
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 c) A die is thrown 8 times. Find the probability that '5' will show (i) exactly twice, (ii) at least 

seven times (iii) at least once. [(1+1+2)+3+3] 

4. a) Show that Poisson distribution is a limiting case of binomial distribution.  

 b) Students of a class were given an aptitude test. Their marks were found to be normally 

distributed with mean 60 and standard deviation 5. What percentage of students scored:  

  (i) more than 60 marks 

  (ii) less than 56 marks 

  (iii) between 45 and 65 marks 
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  P(x) is density function of normal distribution. 

 c) The random variable  x x   is distributed according to normal distribution 
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2y x . [3+3+4] 

5. a) Show that the ODE is not self adjoint.  

 b) Find the weight factor  w x and write ODE in a form      Ly x nw x y x  such that itr 

becomes self-adjoint.  

 c) Write the inner product for two eigenfunctions of ODE including the boundary term.  

 d) What interval  ,a b should we choose so that two different eigenfunctions are orthogonal? [2+3+3+2] 

6. a) Generating function of Legendre Polynomials  nP x  is    
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Using this find    0 1,P x P x .  

 b) Derive the recurrence relation:          1 12 1 1n n nn xP x n P x nP x     . [4+6] 

7. Answer the following questions: 

 a) By changing the coordinates appropriately simplify the following PDE and solve it.  
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 b) Cuylindrical coordinates are related to Cartesian coordinates are related by: 
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  Express the operators 
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8. a) Suppose the following differential equation refers to a problem of two dimensional steady 

flow of heat: 
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  Solve for T with the following boundary conditions:  
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 b) Express  the following integral in term of gamma function 
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